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INFERRING FINITE-TIME PERFORMANCE

IN THE M/G/I QUEUEING MODEL

P.A. Jacobs
D.P. Gaver

1. INTRODUCTION AND SUMMARY

The M/G/1 model for a single server approached by a Poisson (A) stream

of arrivals with independent but otherwise arbitrarily distributed service

times is a standard tool in operations research. It has been used to

model sit'uations occurring in road traffic, computer and communication

performance evaluation and the military, and has been modified to

accommodate priority and server breakdown situations, as well as both

heavy and light traffic situations (p = AE[S] either near, but below.

unity, and near, but above, zero).

Although the M/G/1 model is rather simplistic, little beyond the

moments of its long-run or steady-state distribution are easily available

in anything like closed (and simple) analytical form readily evaluated

numerically. In the case of the exponential service time M/M/i system.

the complete analytical solution for transition probabilisties in terms of

series of Bessel functions has been long known, and numerical transform

inversion by Middleton (1979) has provided some useful tables describing

the manner in which steady state is approached. Recent work of Abate and

Whitt (1989,1988) provides some handy approximations, particularly in the

M/M/1 case. The work of Asmussen and Thorisson (1988) and Newell (1971,
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1982) furnishes diffusion approximations and heavy traffic results as

well.

In this paper we explore the following operationally relevant

Prob1e : A single server is approached by a stream of arrivals to be

modelled as Poisson. One has available a sample of service times obtained

by observing the system. Using the arrival rate (assumed known, at least

initially) and the observed service times, estimate the expected waiting

time encountered by a new arriving customer at finite time t. Further-

more, provide an assessment of estimation uncertainty, e.g. confidence

limits.

The above is just one prototypical question to be asked--it is the one

addressed in this paper. Other questions could conc.!rn the probability

that an arrival at t will wait for at least time w, or that the customer

waiting time has never exceeded w in time t (starting from an empty

system). There are many other such measures of system performance that

are relevant. We concentrate here on inferring the mean waiting time at

finite time t, and do so non-parametrically, i.e. without specifying, and

estimating parameters in a small conventional parametric family such as

the Gamma. Our approach is to work with the well-known Laplace trans-

form of the mean (virtual) waiting time for the M/G/1 system: cf. Takacs

(1962) and Gaver and Jacobs (1987), an empirical version of which can be

obtained by utilizing the empirical transform of the busy period, itself

depending upon the empirical transform of the service time df, derived

from the observed data.

We look upon our present results as exploratory and tentative, but of

an accuracy useful until refinements are available.
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A recent paper by Tengels (1988) provides mathematically rigorous

asymptotic (large sample size) treatment of certain aspects of our

nonparametric infeience problem. Application of bootstrap methods, cf.

Efron (1979) can yield further insights into the inference at the price of

computer intensivity.
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2. MATHEMATICAL FORMULATION

Consider an M/G/1 queue with known arrival rate A and independent

identically distributed service times, S, having nth moment E[S'J < C.

Suppose there are no customers either waiting or being served at time 0.

Let Wt be the virtual waiting time at time t and put (conditional on

WO = 0)

00
Ow (s) = Jo e-stE[Wt] dt, s > 0 .(1)

We know that

tw (s) = 2 + Poo(s) 9 (2)

where:

P0 0 (s) = - (3)
1 s + A - b(s)]

b(s) being the Laplace transform of a busy period duration; b(s) is the

smallest positive solution of

b(s) = Fs(s + A(l - b(s))) (4)

Fs is the Laplace-Stieltjes transform of the service time. See Takacs

(1962) and Gaver and Jacobs (1986).

Two approximations to E[Wt!WO = 0] will be detailed below; one for the

case of the traffic intensity AE[S] < 1; the other for the case of the

traffic intensity AE[S] 2! 1. Both are based on the transforms (2), (3),

and (4).
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3. APPROXIMATIONS FOR STABLE QUEUES: EXPONENTIAL APPROACH

In this subsection, it is assumed that p = AE[S] < 1. In this case

there is a limiting expected virtual waiting time

AE S 2]  
5

';0 = lim E[WtJ = 2(5) ())

t-oc 2(1 - p)

with

p = AEES] , (6)

the traffic intensity.

Our choice of the form of the approximation is based on an observation

of Odoni and Roth (1983), and on relaxation time calculations made by

Keilson (1979), Newell (1971) and others. The explicit approximation of

the exponential:

W -e(1 3t

or

* E k: e (7)

It should be noted that in many cases the exponential approach to the

limiting value is not exact, being only an approximation, cf. Asmussen and

Thorissan (1988). Setting

st E W7 _ j0C 3.t
se-st t d2 = - se' s t  dt (8)

d vw 00 s e

we obtain

a tiW( a)= - (9)

which is now solved for 0 at selected s-values:

1 + V(O) = c
SVw (S) - Woo
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so

-(') = [sUSW(S) - (0SVW(S) - OC(10)

Finally

5 -2 wW(s)
S () _ (S) (11)

The approximation to E[Wt] is

E[Wt] ft Woo(1 - e " t) , (12)

where 3 is evaluated as above at s = 1t It turns out that the 3-values so
t

obtained are not constant but are (extremely) slowly-changing functions of

t. as should be the case from asymptotic analysis.

Table 1 reports the values of the approximating E[Wt] for an M/M/

queue with A = 1 and E[S] = .95. The approximating values are compared to

values obtained by Middleton (1979), who used a numerical inversion of the

Laplace transform vW due to Stehfest (1970). The approximation is very

good for the times less than or equal to 100. For the times greater than

100 thp approx'-Ation is within 11% of the true, and conservatively

slightly- overestimate of the true mean.

6



Table 1

Exponential Approximation
M/M/1 Queue: A = 1, EES] = .95

Time True Exponential

t E 'WtJ Approximation

20 3.9 3.7

40 5.5 5.4

60 6.6 6.6

80 7.4 7.6

100 8.1 8.4

400 13.2 14.6

800 15.5 17.0

1200 16.6 17.7

Note: s = 18.05

Table 2 reports the values of the approximating E[Wt] for an MI/G/i

queue with A = 1 and gamma service times with shape parameter a = .2 and

scale parameter 3 = 4.5. Once again the approximation is very good. The

values of the true EFWt] are from Middleton (1979).

7



Table 2

Exponential Approximation
M/G/1 Queue: A = 1

Service Time Distribution Gamma shape parameter
a = .2, scale parameter 0 = 4.5, E[S] = .90

Time True Exponential

t EEWt] Approximation

4.9 2.3 2.2

9.7 3.7 3.4

29.2 6.9 6.7

48.6 8.8 8.8

97.2 11.9 12.5

194.4 15.3 16.9

486 20.1 21.9

972 22.6 23.7

1458 23.5 23.8

1944 23.9 24.1

Note: = 24.3

The numerical results obtained suggest that in general the

approximation is biased slightly on the high side for large t. It is thus

conservative in the sense that predictions of expected waiting times tend

to be slightly overstated.

8



4. THE HEAVY TRAFFIC EXPONENTIAL APPROXIMATION (HTE)

The most computationally-intensive part of the exponential

approximation is the numerical evaluation of the transform of the busy

period b(s) using equation (4). This computation has been done by search.

In this section another approximation is described which uses a heavy

traffic approximation to obtain b(s), and is computationally less arduous.

Let {B(t)} be a Brownipn motion with drift v = AE[S] - 1 and

infinitesir.l variance o,2 = AE[S 2] where S is a generic service time. Let

Tx be the first passage time to state 0 given B(O) = x. Put

o(s;x) = E[e-sTx (:3)

It is known that

o(s:x) = e (s )x  (14)

where

-1 li 2 + 2,,2sJ

a(s) = -(15)

Of course this function is explicit and readily evaluated, and no search

is needed.

Approximating the virtual waiting time process by the Brownian motion

with drift, the proposed approximation for the transform of the busy

period is

bBM(s) = E[ea(S)S] , (16)

the Laplace-Stieljes transform of the service time distribution evaluated

at a(s). The remainder of the approximaticn is the same as the

exponential approximation. Table 3 shows the values of the heavy traffic

9



approximation for the M/G/I queue with A = 1 and gamma service time

distribution with shape parameter a = 0.2 (very long-tailed) and scale

parameter 3 = 4.5. The heavy traffic approximation is not as good as the

exponential one and tends to overestimate ECW] . However, the

approximation is still practically adequate, and is far easier to compute

than is the "exact" exponential approximation of Section 2.

Table 3

Unsaturated Heavy Traffic Approximation
M/G/l Queue: A = 1, Gamma Service Times

Shape parameter a = 0.2, scale parameter 3 = 4.5, E[S] = .90

Time True Heavy Traffic

t E [Wt] Approximation

4.9 2.3 2.5

9.7 3.7 3.9

29.2 6.9 7.5

48.6 8.8 9.8

97.2 11.9 13.6

194.4 15.3 17.9

972 22.6 24.1

1944 23.9 24.3

Note: = 24.3
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5. THE BUSY PERIOD APPROXIMATION

This approach is based on approximating the rate of approach of the

probability o an empty system, P00 (t), to its eventual value. Since the

process of alternating busy and idel periods can be expressed in terms of

an alternating renewal process, methods of Gaver and Jacobs (1988) can be

applied.

Note:

s *W(s) = + Poo(s) , (17)

where

Poo s) =[ bs)]

and

Poo ( s ) = I e st P{X(t) = OIX(O) = O}dt (19)

where X(t) is the number of customers waiting or being served at time t.

Assume the queue is stable; then

lim P{X(t) = oIX(O) = o} = E[Idle] (20)
t-X E[Idle] + E[Busy] = 1 - P

where Idle is the length of an idle period and Busy is the length of a

busy period. Approximate as follows focussing on the probability that the

system is empty, approximates as follows in terms of the parameter Ob:

P{X(t) = OIX(O) = 0} (1 - p) + pe O (21)

from this comes

E[Wt] m (p - 1)t + (1 - p)t + P.-(1 - e " bt)

P - e " bt) (22)
*b = E~i1-



To find 0.:

(1 -p) p
P 0 (s) = ( + T-s (23)

A~i i b , = i(24)

poo(s) = 1 b (C(s) (24
I + s + -1 P S

where

C(s) = El - b(s)J and AEEB] = 1 (25)sE[B]

Solving for Ob results in

sC(s) P p + 1] sC(s) P2

=  - C(s) 1 - C(s)

and evaluate at s =

Table 4 shows values for the busy period approximation for an M/M/I

queue with A = 1 and p = .95. The approximate values are below the true

values for most times t. This approximation is not as accurate as is the

exponential approximation of Section 2, no longer being conservative.

Table 4

Busy Period Approximation
M/M/1 Queue

S= 1, E[S] = .95

Time True Approximate

t E[]t]

20 3.9 4.1

40 5.5 5.4

60 6.6 6.3

80 7.4 7.0

100 8.1 7.5

400 13.2 11.6

800 15.5 13.5

1200 16.6 14.6

12



6. THE UNSTABLE OR SATURATED QUEUE EXPONENTIAL APPROXIMATION

Rewriting, we have

=w(S) + - I[- b(s)] (27)

5p + ~ s + A[lI - b(s)] (28'

In this subsection we assume that p > 1. When this is true the

distribution of the length of the busy period is not honest, and

b(O) < 1. We will write b(O) b#(s) = b(O) [bj2], where b*(s) is now the
b(0)

transform of an honest random variable. Now

Vw (S) = - + 1 1= -i 1 1 #() (29)
s + A[1- b(O) b*(s)]

For small s

p- i 1 (30)
= + S - b(O)]

Thus for large t

E[Wt] 2 (p- 1)t + A[1 1 (31)

Further

Ww(S) = P + 6(s) (32)

where

s + Al - b(O)b#*(s)] s + A - Ab(O)b (s)

Multiplying through by s + A yields

(s + A)(S)= 1
1 .- ( b#(s)s + .. s

or

13



(s + A)6(s) = 1 + (s + A)6(s{I-S b(O)b#(s)j ;(33)

and

(s)= + b b(O)b(s) (s) (34)

s + SA

Letting €(s) = Je~ "f(t)dt

0

f(t) = e - A t + 0f(t-u)h(u)du

where

-(s) - eth(t)dt = b(O) A + (S) (33)

and

h(O) = b(O) < 1

Thus f satisfies a renewal-type equation with a degenerate distribution

and it can be shown (cf. Feller (1966))

f(t) ce as t - oc (36)

Thus. since

Vw( = - 1 + 1 O(s)S 
2

2 (p - 1)t + 5(1 - e - Ot) (37)

as t - oc. Comparing (36) with (31) indicates that

A[I b(O)] (38)

14



In the saturated case the exponential approximation is computed as

fo l lows:

E[t3 - (p - I)t : a (1 - e - t)

where

a [ = -L b(O)]

Thus

E - (p - 1)t - a -t (39)

Taking Laplace transforms

SVW (s) - (P---) - a 1(40)

which leads to

- 2 -Jw(S) + (p 1) (41)s1.w( s ) _ (p__i _ 1

since

a = A[1 (42)-i b(0)7



7. THE SATURATED QUEUE HEAVY TRAFFIC EXPONENTIAL APPROXIMATION

Once again the most arduous computation in the saturated queue

exponential approximation is the computation of b(s), the transform of the

length of the busy period. As before, an approximation is proposed which

uses a heavy traffic approximation to evaluate b(s) and b(O).

Specifically, since v =.AEESJ - 1 > 0 let

a (0) = - (43)

and

F(s) = 2,2 
(44)

172

and put

b(O) = E[ea(o)s] (45)

and

b(s) = EIea(S)S ]  (46)

The remainder of the approximation is as in the exponential approximation

for the saturated queue.

Table 5 shows results for both the "exact" exponential approximation

and heavy traffic approximation for a saturated M/G/1 queue with A = 1 and

gamma service times having shape parameter 0.2 and scale parameter 7.5 and

ECS] = 1.5. The true values are from Middleton (1979). As is expected

the exponential approximation gives values which are closer to the true.

Both approximations improve as t increases. The exponential approximation

is very good for all times except the very smallest.

16



Table 5

Saturated M/G/I Queue
A = 1, Gamma Service Times, E[S] = 1.5

Shape parameter 0.2, Scale parameter 7.5

Time True Exponential Heavy Traffic
t EIWt Approximation Approximation

1.6 3.9 1.9 2.1
8.1 7.5 7.4 8.2

16.2 12.9 13.1 14.4
27.0 19.3 19.7 21.6
43.2 28.3 28.8 31.3

54.0 34.0 34.6 37.3
108.0 61.9 62.2 65.6

162.0 89.1 89.2 92.8
216.0 116.2 116.2 119.8
324.0 170.2 170.2 173.8

432.0 224.2 224.2 227.6

17



8. INFERENCE

The approximations to E[Wt] can be used for inferential purposes by

replacing moment and transforms by sample moments and empirical

transforms. More specifically, suppose A = 1 is known and service time

data dl,... ,d, are collected. The empirical Laplace transform of the

service time distribution is

= (- e (47)

IPc is estimated by

S2((48)S=2(1 -)

where

di (49)
i=

= A d 2 ; (50)i=l

and

= A .(51)

The empirical Laplace transform of the service times and the moment

estimator of p, 0, can be used in formulas (2)-(4) to obtain an estimate

of -w(s). This estimate, w(s), together with 0 can be used in the

approximations to obtain estimates of E[W(t)].

Tables 6-8 report results of simulation experiments to study the

behavior of the estimates. Each simulation has 1000 replications. Each

replication supposes a sample of 100 service times. The random numbers

were generated using LLRANDOMII random number package, see Lewis and Uribe

18



Table 6

Moments of Estimates of E[Wt]
for

,I/NI/I Queue with
A= 1 E[S] = 0.9

Time True Exponential Heavy Traffic
t E [Wt] Approximation Approximation

Mean Variance Mean Variance

6.5 1.9 1.8 0.1 2.0 0.1

32.4 4.2 4.3 2.0 4.5 2.4

97.2 5.9 6.8 14.0 7.1 15.6

162.0 6.7 8.3 33.1 8.6 35.9

486.0 7.9 13.0 210.6 13.2 218.5

648.0 S.0 14.7 347.6 14.9 357.5

Table 7

Moments of Estimates of E7Wt]
M/G/I Queue

A = 1 EIS] = 0.5
Gamma Service Times

Shape = 0.2 Scale = 2.5

Time True Exponential Heavy Traffic
t E [Wt] Approximation Apprcximation

Mean Variance Mean Variance

0.3 0.13 0.12 0.001 0.13 .001

1.8 0.53 0.51 0.024 0.56 .03

3.0 0.71 0.70 0.058 0.78 .08

4.8 0.90 0.91 0.13 1.0 .17

9.0 1.2 1.2 0.33 1.3 .44

24.0 1.4 1.6 1.0 1.6 1.2
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Table 8

Moments of Estimates of E[Wt]
M/G/1 Queue

A= 1, EES] = 1.5
Gamma Service Times

Shape = 0.2 Scale = 7.5

Time True Exponential Heavy Traffic

t EEWt] Approximation Approximation

Mean Variance Mean Variance

1.6 3.9 1.9 0.30 2.0 .31

8.1 7.5 7.3 6.7 8.1 7.6

54.0 34.0 34.5 256.8 36.8 277.7

162.0 89.1 90.1 2436.0 92.9 2488.0

324.0 170.2 171.3 10,210 174.3 10,296

(1981). If the true average service time is close to 1, then it is

clearly possible for the sample traffic intensity to be less than or

greater than 1. If is less than 1, then the estimate using the

approximation for the stable queue is computed. If A > 1, then the

estimate using the approximation for the unstable queue is computed. This

choice appears to be natural unless other information is available, or

more assumptions are made.

In Tables 6-8 are reported means and variances of the estimates of

ErWI for the estimates based on the exponential approximation and the

heavy traffic approximation.

In Table 6 results for a M/M/1 queue with E[S] = .90 are given. The

same random numbers were used to compute the estimates for each of the

times t. Of the 1000 replications, 137 had P > 1 and so the unstable

queueing approximations were used in these cases. Doubtless it is the

contribution of these cases that lead to the pronounced over estimate of

the mean.
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In Table 7 are reported results for an M/G/1 queue with A = 1 and

gamma service times with E[S] = .5 having shape parameter .2 and scale

parameter 2.5. None of the 1000 replications has A > 1.

In Table 8 are reported moments for the estimates of E[Wt" for an

unstable M/G/1 queue with A = 1 and gamma service times with shape

parameter 0.2 and scale parameter 7.5 and E[S] = 1.5. Of the 1000

replications A > 1 for 938. of them. The true values of EEWt] in all the

tables are from Middleton (1979).

The means of the heavy traffic approximation are larger than those for

the exponential approximation. The variances increase as t increases.

The very large variances in Tables 6 and 8 are attributable to those

estimates of E Wt] for which > 1.

In order to put the large variances of Table 8 into perspective.

consider the following approximation.

As a first approximation, if AEES] > 1, then E[Wt] : (AE[S] - 1)t

which c&. be estimated using the mean of the service times

n(t) = (Aa - 1)t

The variance of rh(t) for a sample size of 100 is

Var[ffi(t)] = \2 Var(S) t2

In the case of a gamma service time distribution with shape parameter 0.2

and scale parameter 7.5, A = 1, t = 162

Var[ffi(t)] = 2952.5

Comparing this number to the corresponding variance of the estimate in

Table 8 of 2436 indicates that the latter variance is not unreasonable.

21



The means of the estimates in Table 7 are close to the theoretical

values in this stable queue. The means of the estimates in Table 6 are

close to the theoretical values for the smaller t's. For larger t the

means are greater than the theoretical values owing to those replications

for which A > 1.

The means of the estimates in the unstable queue case of Table 8 are

close to the true values of E[Wt] except for the smallest time, t = 1.6.
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9. CONCLUSIONS

This paper proposes an easily-computed approximation to the finite-

time expected waiting time for an NI/G/1 system starting from an empty

condition. Both unsaturated (p < 1) and saturated (p > 1) conditions are

considered. Numerical evidence is presented to indicate that the quality

of the approximation is usefully good, especially when ease of computation

is an issue. Further, the methodology is axdapted to assess expected

waiting time when inferences must be made from a random sample of service

times, and the decision is made to do so nonparametrically, i.e. without

fitting a specific function. The results appear reasonable and

potentially useful, and are not burdensome to obtain. The methodology

investigated can also be appliea to the variety of queueing models that

are close siblings of M/G/I: priority and breakdowns and "vacations"

being examples. Of course other approximating and inferential options

remain to be investigated.
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